Рабочая программа естественнонаучной направленности (Точка Роста) «Физика в опытах и экспериментах»

1. Пояснительная записка

Предлагаемая программа кружка «Физика в опытах и экспериментах» рассчитана для учащихся 9 классов. Программа рекомендуется для работы, с целью привития интереса к предмету, формирования у учащихся навыков исследовательской деятельности, углубления и расширения знания по физике. На преподавание курса отводится 34 часа.

Систематически выполняя экспериментальные задания, обучающиеся овладевают физическими методами познания: собирают экспериментальные установки, измеряют физические величины, представляют результаты измерений в виде таблиц, графиков, делают выводы из эксперимента, объясняют результаты своих наблюдений и опытов с теоретических позиций.

Цель курса: развитие познавательных интересов и творческих способностей обучающихся, интереса к расширению и углублению физических знаний, а также обеспечить дополнительную поддержку выпускников основной школы для сдачи ГИА по физике.

Достижение этой цели обеспечивается решением следующих задач:

- раскрытие зависимостей, выраженных физическими законами, закономерностями, путем измерения физических величин;
- осознание и понимание физических явлений и законов;
- формирование у учащихся умений и навыков по использованию в экспериментальных работах простейших измерительных приборов и приспособлений;
- обеспечить прочное и сознательное овладение системой физических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
- обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для физической деятельности и необходимые для полноценной жизни в обществе.

Программа курса направлена на повышение интереса к физике и способствует лучшему усвоению материала, на создание условий для самостоятельной творческой деятельности обучающихся, на развитие интереса к практической деятельности на материале простых увлекательных опытов.

Поскольку наблюдения и опыты являются источниками знаний о природе, ученики выступают в роли физиков-исследователей. Выполнение самостоятельных практических работ обеспечивает связь физического эксперимента с изучаемым теоретическим материалом, что позволяет им самостоятельно делать обобщения и выводы. А решение физических задач, подкрепляемых физическими экспериментами, становится осознанным и приводит к более качественному запоминанию физических явлений и законов. Учитель выступает в роли консультанта. В большей степени необходимо понимать и чувствовать, как учится ребенок, координировать и направлять его деятельность.

Формы и методы организации занятий: практические занятия по решению экспериментальных задач фронтально, в группах, в парах.

2. Планируемые результаты освоения курса

Личностными результатами изучения курса «Физика в опытах и экспериментах» является формирование следующих умений:

- Сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся.
- Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- Самостоятельность в приобретении новых знаний и практических умений;
- Мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- Формирование ценностных отношений друг к другу, к учителю, к авторам открытий и изобретений, к результатам обучения;
- Приобретение положительного эмоционального отношения к окружающей природе и самому себе как части природы, желание познавать природные объекты и явления в соответствии с жизненными потребностями и интересами;
- Приобретение умения ставить перед собой познавательные цели, выдвигать гипотезы, конструировать высказывания естественнонаучного характера, доказывать собственную точку зрения по обсуждаемому вопросу.
- Определять и высказывать под руководством педагога самые общие для всех людей правила поведения при сотрудничестве (этические нормы).
- В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех правила поведения, делать выбор, при поддержке других участников группы и педагога, как поступить.
- Средством достижения этих результатов служит организация на уроке парно-групповой работы.

Метапредметными результатами изучения курса «Физика в опытах и экспериментах» являются формирование следующих универсальных учебных действий (УУД).

Регулятивные УУД:

- Определять и формулировать цель деятельности на занятии.
- Проговаривать последовательность действий на занятии.
- Учиться высказывать своё предположение (версию) на основе работы с иллюстрацией учебника.
- Учиться работать по предложенному учителем плану.
- Средством формирования этих действий служит технология проблемного диалога на этапе изучения нового материала.
- Учиться отличать верное выполненное задание от неверного.
- Учиться совместно с учителем и другими учениками давать эмоциональную оценку деятельности на занятии.
- Средством формирования этих действий служит технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

- Ориентироваться в своей системе знаний: отличать новое от уже известного
- Добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.
- Перерабатывать полученную информацию: делать выводы в результате совместной работы коллектива.
- Перерабатывать полученную информацию: сравнивать и классифицировать.

- Преобразовывать информацию из одной формы в другую: составлять физические рассказы и задачи на основе простейших физических моделей (предметных, рисунков, схематических рисунков, схем); находить и формулировать решение задачи с помощью простейших моделей (предметных, рисунков, схематических рисунков, схем).
- Средством формирования этих действий служит учебный материал и задания, ориентированные на линии развития средствами предмета.

Коммуникативные УУД:

- Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).
- Слушать и понимать речь других.
- Средством формирования этих действий служит технология проблемного диалога (побуждающий и подводящий диалог).
- Учиться выполнять различные роли в группе (лидера, исполнителя, критика).
- Средством формирования этих действий служит организация работы в парах и малых группах (в методических рекомендациях даны такие варианты проведения уроков).

Предметными результатами изучения курса «Физика в опытах и задачах» являются формирование следующих умений:

- Самостоятельно выделять и формулировать познавательную цель.
- Использовать общие приёмы решения задач.
- Применять правила и пользоваться инструкциями и освоенными закономерностями.
- Осуществлять смысловое чтение.
- Создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач.
- Находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации.
- Устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы.
- Формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности).
- Видеть физическую задачу в других дисциплинах, в окружающей жизни.
- Выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки.
- Планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
- Выбирать наиболее рациональные и эффективные способы решения задач.
- Интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ).
- Оценивать информацию (критическая оценка, оценка достоверности).
- Устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения.

3. Содержание курса

Введение

Цели и задачи курса. Техника безопасности.

Система единиц, понятие о прямых и косвенных измерениях

Физический эксперимент. Виды физического эксперимента. Погрешность измерения. Виды погрешностей измерения. Расчёт погрешности измерения.

Задания 1 типа: Определение неизвестной величины на основе прямых измерений

Задания 2 типа: Исследование зависимостей между физическими величинами (по результатам прямых измерений)

Задания 3 типа: Проверка заданных предположений (по результатам прямых измерений)

Задания 4 типа: Опыты по исследованию физических явлений

Подведение итогов.

4. Тематическое планирование

Тема	Количество часов
Введение.	1
Задания 1 типа: Определение неизвестной величины на основе	15
прямых измерений	
Задания 2 типа: Исследование зависимостей между физическими	10
величинами (по результатам прямых измерений)	
Задания 3 типа: Проверка заданных предположений (по	5
результатам прямых измерений)	
Задания 4 типа: Опыты по исследованию физических явлений	3
ИТОГО	34

N₂	Тема	Количество часов
п/п		
1	Введение.	1
	Задания 1 типа: Определение неизвестной величины на	
	основе прямых измерений	
2	Задание 1. Определение плотности твердого тела	1
3	Задание 2. Определение коэффициента трения скольжения	1
4	Задание 3. Определение жесткости пружины	1
5	Задание 4. Определение выталкивающей силы,	1
	действующей на тело, погруженное в жидкость	
6	Задание 5. Определение средней скорости скольжения	1
	бруска по наклонной плоскости	
7	Задание 6. Определение работы силы трения при	1
	равномерном движении тела по горизонтальной	
	поверхности	
8	Задание 7. Определение работы силы упругости при	1
	подъеме груза с использованием неподвижного блока	
9	Задание 8. Определение работы силы упругости при	1
	подъеме груза с использованием подвижного блока	
10	Задание 9. Определение момента силы, действующей на	1
	рычаг	
11	Задание 10. Определение частоты колебаний	1
	математического маятника	
12	Задание 11. Определение количества теплоты, полученного	1

	водой при теплообмене с нагретым алюминиевым	
	цилиндром	
13	Задание 12. Определение электрического сопротивления	1
	резистора	_
14	Задание 13. Определение мощности электрического тока,	1
	выделяемой на резисторе	
15	Задание 14. Определение работы электрического тока,	1
	протекающего через резистор	
16	Задание 15. Определение оптической силы собирающей	1
	линзы	
	Задания 2 типа: Исследование зависимостей между	
	физическими величинами (по результатам прямых	
	измерений)	
17	Задание 1. Исследование зависимости массы от объема	1
18	Задание 2. Исследование зависимости силы тяжести,	1
	действующей на тела, от массы тел	
19	Задание 3. Исследование зависимости силы трения	1
	скольжения от силы нормального давления	
20	Задание 4. Исследование зависимости растяжение	1
	(деформации) пружины от приложенной силы	
21	Задание 5. Исследование изменения веса тела в воде от	1
	объема погруженной в жидкость части тела	
22	Задание 6. Исследование зависимости периода колебаний	1
22	подвешенного к ленте груза от длины ленты	1
23	Задание 7. Исследование зависимости пути от времени при	1
24	равноускоренном движении без начальной скорости	1
24	Задание 8. Исследование равновесия рычага	
25	Задание 9. Исследование зависимости силы тока,	1
	протекающего через резистор, от электрического	
26	напряжения на резисторе	1
26	Задание 10. Исследование зависимости угла преломления от	1
	угла падения светового луча на границе «воздух-стекло»	
	Задания 3 типа: Проверка заданных предположений (по	
27	результатам прямых измерений) Задание 1. Проверка независимости периода колебаний	1
21	груза, подвешенного к ленте, от массы груза	1
28	Задание 2. Проверка независимости выталкивающей силы,	1
20	действующей на тело в жидкости, от массы тела.	_
29	Задание 3. Проверка правила сложения напряжений при	1
	последовательном соединении двух резисторов	
30	Задание 4. Проверка правила для силы тока при	1
	параллельном соединении резисторов	
31	Задание 5. Проверка предположения о сумме расстояний от	1
	линзы до предмета и изображения	
	Задания 4 типа: Опыты по исследованию физических	
	явлений	
32	Задание 1. Опыты, демонстрирующие зависимость	1
	выталкивающей силы, действующей на тело в жидкости, от	
	объема погруженной в жидкость части тела и от плотности	
	жидкости	

33	Задание 2. Опыты, демонстрирующие зависимость силы	1
	трения скольжения от веса тела и характера	
	соприкасающихся поверхностей.	
34	Задание 3. Наблюдение скорости изменения температуры	1
	воды при ее охлаждении.	
	Подведение итогов	
	ИТОГО	34

5. Планируемые результаты изучения курса

К концу изучения курса обучающийся научится: понимать:

смысл понятий: физическое явление, физический закон, физические величины, взаимодействие;

смысл физических величин: путь, скорость, масса, плотность, сила, давление, работа, мощность, кинетическая энергия, потенциальная энергия, количество теплоты, напряжение, сила тока, сопротивление, работа и мощность электрического тока; смысл физических законов: закон Паскаля, закон Архимеда, закон Ома, закон Джоуля-Ленца, законы Ньютона.

получит возможность научиться:

- -собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;
- -измерять массу, объём, силу тяжести, силу трения, силу упругости, силу Архимеда, расстояние, температуру, силу тока, напряжение; представлять результаты измерений в виде таблиц или графиков, выявлять эмпирические зависимости;
- -объяснять результаты наблюдений и экспериментов;
- -применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений;
- -выражать результаты измерений и расчётов в единицах Международной системы;
- -приводить примеры практического использования физических законов;
- -использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.